18 research outputs found

    Effect of short-term exposure to stereoscopic three-dimensional flight displays on real-world depth perception

    Get PDF
    High-fidelity color pictorial displays that incorporate depth cues in the display elements are currently available. Depth cuing applied to advanced head-down flight display concepts potentially enhances the pilot's situational awareness and improves task performance. Depth cues provided by stereopsis exhibit constraints that must be fully understood so depth cuing enhancements can be adequately realized and exploited. A fundamental issue (the goal of this investigation) is whether the use of head-down stereoscopic displays in flight applications degrade the real-world depth perception of pilots using such displays. Stereoacuity tests are used in this study as the measure of interest. Eight pilots flew repeated simulated landing approaches using both nonstereo and stereo 3-D head-down pathway-in-the-sky displays. At this decision height of each approach (where the pilot changes to an out-the-window view to obtain real-world visual references) the pilots changed to a stereoacuity test that used real objects. Statistical analysis of stereoacuity measures (data for a control condition of no exposure to any electronic flight display compared with data for changes from nonstereo and from stereo displays) reveals no significant differences for any of the conditions. Therefore, changing from short-term exposure to a head-down stereo display has no more effect on real-world relative depth perception than does changing from a nonstereo display. However, depth perception effects based on sized and distance judgements and on long-term exposure remain issues to be investigated

    Spatial awareness comparisons between large-screen, integrated pictorial displays and conventional EFIS displays during simulated landing approaches

    Get PDF
    An extensive simulation study was performed to determine and compare the spatial awareness of commercial airline pilots on simulated landing approaches using conventional flight displays with their awareness using advanced pictorial 'pathway in the sky' displays. Sixteen commercial airline pilots repeatedly made simulated complex microwave landing system approaches to closely spaced parallel runways with an extremely short final segment. Scenarios involving conflicting traffic situation assessments and recoveries from flight path offset conditions were used to assess spatial awareness (own ship position relative the the desired flight route, the runway, and other traffic) with the various display formats. The situation assessment tools are presented, as well as the experimental designs and the results. The results demonstrate that the integrated pictorial displays substantially increase spatial awareness over conventional electronic flight information systems display formats

    Effect of eicosapentaenoic acid, protein and amino acids on protein synthesis and degradation in skeletal muscle of cachectic mice

    Get PDF
    Atrophy of skeletal muscle reduces both the quality and quantity of life of patients with cancer cachexia. Loss of muscle mass is thought to arise from a reduction in protein synthesis combined with an enhanced rate of protein degradation, and few treatments are available to counteract this process. Eicosapentaenoic acid (EPA) has been shown to attenuate the enhanced protein degradation, but to have no effect on protein synthesis. This study examines the effect of EPA combined with a protein and amino-acid supplementation on protein synthesis and degradation in gastrocnemius muscle of mice bearing the cachexia-inducing MAC16 tumour. Muscles from cachectic mice showed an 80% reduction in protein synthesis and about a 50-fold increase in protein degradation compared with muscles from nontumour-bearing mice of the same age and weight. Treatment with EPA (1 g kg-1) daily reduced protein degradation by 88%, but had no effect on protein synthesis. Combination of EPA with casein (5.35 g kg-1) also had no effect on protein synthesis, but when combined with the amino acids leucine, arginine and methionine there was almost a doubling of protein synthesis. The addition of carbohydrate (10.7 g kg-1) to stimulate insulin release had no additional effect. The combination involving the amino acids produced almost a doubling of the ratio of protein synthesis to protein degradation in gastrocnemius muscle over that of EPA alone. No treatment had a significant effect on tumour growth rate, but the inclusion of amino acids had a more significant effect on weight loss induced by the MAC16 tumour than that of EPA alone. The results suggest that combination therapy of cancer cachexia involving both inhibition of the enhanced protein degradation and stimulation of the reduced protein synthesis may be more effective than either treatment alone. © 2004 Cancer Research UK

    Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements

    Get PDF
    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations

    Increased expression of phosphorylated forms of RNA-dependent protein kinase and eukaryotic initiation factor 2α may signal skeletal muscle atrophy in weight-losing cancer patients

    Get PDF
    Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the α-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2α have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2α were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2α (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2α. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2α (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients

    Comparison of Pilots' Situational Awareness While Monitoring Autoland Approaches Using Conventional and Advanced Flight Display Formats

    No full text
    A simulation experiment was performed to assess situation awareness (SA) and workload of pilots while monitoring simulated autoland operations in Instrument Meteorological Conditions with three advanced display concepts: two enhanced electronic flight information system (EFIS)-type display concepts and one totally synthetic, integrated pictorial display concept. Each concept incorporated sensor-derived wireframe runway and iconic depictions of sensor-detected traffic in different locations on the display media. Various scenarios, involving conflicting traffic situation assessments, main display failures, and navigation/autopilot system errors, were used to assess the pilots' SA and workload during autoland approaches with the display concepts. From the results, for each scenario, the integrated pictorial display concept provided the pilots with statistically equivalent or substantially improved SA over the other display concepts. In addition to increased SA, subjective rankings indicated that the pictorial concept offered reductions in overall pilot workload (in both mean ranking and spread) over the two enhanced EFIS-type display concepts. Out of the display concepts flown, the pilots ranked the pictorial concept as the display that was easiest to use to maintain situational awareness, to monitor an autoland approach, to interpret information from the runway and obstacle detecting sensor systems, and to make the decision to go around

    Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges

    Get PDF
    Jarchow J, Fritz J, Anselmetti D, et al. Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges. Journal of structural biology. 2000;132(2):95-105.Aggregation factors are the molecules responsible for species-specific cell adhesion in sponges. Here, we present the structure of the aggregation factor from the marine sponge Microciona prolifera, which constitutes the first description of a circular proteoglycan. We have analyzed chemically dissociated and enzymatically digested aggregation factor with atomic force microscopy, agarose gel electrophoresis, and Western blots using antibodies against the protein and carbohydrate moieties. Twenty units from each of two N-glycosylated proteins, MAFp3 and MAFp4, form the central ring and radiating arms, respectively, stabilized by a hyaluronidase-sensitive component. MAFp3 carries a 200-kDa glycan involved in homologous self-interactions between aggregation factor molecules, whereas MAFp4 carries a 6-kDa glycan that binds cell surface receptors. A 68-kDa lectin found in cell membranes of several sponge species binds the aggregation factor and its protein-free glycans, as well as chondroitin sulfate and hyaluronan. Here, we show that despite their lack of clear sequence homologies with other known proteoglycan structures, the protein and carbohydrate components of sponge aggregation factors assemble to form a supramolecular complex remarkably similar to classical proteoglycans

    Spatial Awareness Comparisons Between Large-Screen, Integrated Pictorial Displays and Conventional EFIS Displays During Simulated Landing Approaches

    No full text
    This paper focuses on large-screen, integrated pictorial displays as an approach to synthetic vision technology and on optimizing crew spatial awareness. To understand situation awareness (SA) in civil transport operations, a definition is necessary. Regal, Rogers, and Boucek (ref. 8) state that SA implies "that the pilot has an integrated understanding of the factors that will contribute to the safe flying of the aircraft under normal or non-normal conditions." As SA increases, "the pilot is increasingly able to `think ahead of the aircraft,' and ...dothis for a wider variety of situations." This anticipation entails "a knowledge of present states, future goals, and the procedures used to get from one to the other." Regal, Rogers, and Boucek go on to expound that, for the commercial pilot, another dimension of SA involves the individual components. One of the more important of these components is spatial awareness, which in this paper involves knowledge of the own ship position relative to the desired flight route, the runway, and the other traffic. The objective of the investigation reported herein was to evaluate and compare the spatial awareness component of pilots using displays representative EFIS w/o flight directo
    corecore